Laser Cut Bowls For Fun and For Good

Each year, we do a fundraiser for local food pantries and homeless shelters. The aim is to raise awareness, and help address hunger in our local area. An integral part of this fundraiser are decorative bowls that are given out as keepsakes of each years events. This year, I was tasked with producing bowls, and needed to splice this task with getting the 6th grade confident in 2D design and laser cutting.

The result is simple laser cut bowls made of concentric layers that are rotated and glued to create the final form. The design process is simple and comes out intricate and quite beautiful.

The designs are done in Gravit.io, an amazing vector illustration tool that runs perfectly in the browser. To get my students into designing quickly. I put together a step by step guide, as well as a walkthrough video that you can use easily to get going. You can see the video and the guide here.

This lesson took two 70 minute periods, one to design and one to assemble. Most of the laser cutting took place outside of classtime in order to keep the project moving forward, but could certainly be done during class time with each bowl taking no more than 10 minutes to cut out. It would be a perfect introduction to the operation of the laser cutter as well.

In the end, these bowls were huge hit. In fact, we were asked to make an additional batch of 15 in a bit of a larger size as gifts for hosts during an Upper School exchange trip. It is certainly one of those rare and wonderful successes in the space this year.

Brew Day Debrief: Kitchen Sink Extract

I haven’t brewed in a long time, way too long. For plenty of reasons, it has been nearly impossible to carve out 5 hours on a weekend to make it happen. Plus, I’ve been prepping for the BJCP exam, so brewing as been second to drinking and studying leading up to that. But now I’ve taken the exam, and I’ve been pushing myself to open up the weekend shop and brewing time. So, I decided to do something quick and easy, an extract batch.

Heres the recipe for a 2 gallon batch:

  • 3.3lbs Briess Light Pilsner LME
  • 1lb rolled oats steeped for 20 minutes
  • 0.3oz Falconers Flight 7C’s – 60 minutes
  • 0.2oz each of Amarillo, Centennial, Simcoe – 5 minutes
  • 0.2oz each of Amarillo, Centennial, Simcoe – Whirlpool / Chilling
  • 0.6oz each of Amarillo, Centennial, Simcoe – 7 Day Dry Hop

This is what I am affectionately calling the Kitchen Sink Extract Pale Ale. It is using up a few older bags of Amarillo, Centennial, and Simcoe I had in the fridge from my Hop Hands clone attempts, and a very old back of the 7C’s I didn’t even know I had. The oats were thrown in just for fun, not really expecting any real contribution…I just wanted to add something. Not sure really wether to call this a Pale Ale or an IPA. It doesn’t quite have the gravity for an IPA, but it has the bitterness.

I nailed that estimated gravity I got from Beersmith. Nice boil for 90 minutes. Nothing out of the ordinary.

I’ve been experimenting with different ways of cooling. I have my wort chiller, but I don’t have a hose line to connect it to, so I use a simple submersible pump. Usually I’ll run that from a bucket in the kitchen, but that has been a bit messy at times, so I started running it in the shower. That has been much cleaner, and moving the 2 gallon container isn’t hard…however, I’ve had to move the vessel again after chilling to transfer into the fermenter bucket. This time, I took the time to plan a bit better and came up with this system:

The next step is to add a valve to this kettle to make transferring to the fermenter easier, and cleaner hopefully following the whirlpool.

On the brew system to do list for this week:

  • Make room in the beer fridge for a fermenter bucket to cold crash / dry hop next week. Maybe do a gelatin fining addition as well? This batch seemed super truby.
  • Put the a valve on this boil kettle.
  • Design / Order Parts for the recirculation sprayer on the electric mash tun system. Maybe clean up the pump arrangement rather than leaving it floating on the table. Maybe look into quick release fittings?
  • Move the fermenter from the hot water bath with the aquarium heater, into the fridge with the microspace heater.
  • Plan batch for brewing this weekend…if I have time over the weekend…maybe a snowday batch?!

 

Game Design & Unfettered Creativity

We’ve just begun a new semester, and the 7th grade are starting the semester with a unit on Game Design. The objective is to highlight systems level thinking, slip in some engineering concepts, and transition to some computer science in the form of video game development. However, I’ve tapped into a level of creativity I haven’t seen in my classroom before.

We started this whole unit by building a simple game. A ‘Race to the End’ game. Inspired by Game Design Concepts by Ian Schreiber, the challenge was to build a simple game whose objective is to reach the end of a path. Then, students add a theme, add conflict and make these game their own, adding their own creative twist.

And boy did they. Nearly every game involves a physical component I would have never though of. Students are playing the role of the famous school house ghost, Priscilla. Students are being forced to ‘smell the trash can.’ There are jumping jacks being done in the back of the room. Spontaneous singing. Some perhaps cross the line, but largely, kids were being kids and fun was being had. Sure, some marker end up on some faces, but that was a small price to pay for the kind of engagement that was happening in the room.

At the end of the day, I’m super happy with a project that let students run in whatever direction they wanted. The balance of a bit of structure with enough open-endedness allowed for meaningful engagement. As we carry the skills that we learned with this game into another, perhaps even more open ended board game, and eventually into developing video games, the fun that was sparked with this project will carry them through to even more amazing end products.

 

Design Challenge: The Foam Wood Derby

I’ve always wanted to run a super face paced pinewood derby style race. As I designed some simple, messy projects for the 8th grade as sort of fun one off projects, I decided to make the idea a reality.

The design is simple. Each group (or individual if your group is small enough) has two deliverables. A car carved out of foam, and a top and side drawing of the car. They get a basic set of materials. A block of floral ‘wet’ foam, 2 axles and 4 wheels. And they get a simple set of tools. Basic measurement tools, speed squares and surform carving tools.

I introduced the challenge quickly, then let the students loose. To avoid having students completely destroy their blocks instantly, I made the drawings a prerequisite to getting the carving tools. The drawings could be simple, but I required a detailed full scale engineering style drawing.

Once the drawings were approved, they were off to the races. However, floral foam is mess. Super messy. I had complaints of allergy like irritation, the foam staining white shirts, dust in their eyes. All sorts of things. However, after stressing caution, using aprons and generally being more mindful, those complaints dropped off. Perhaps this would be a good project to do in a larger space or even outside.

With the designs carved, students were free to attach their axles and wheels. I could have stopped the groups and stressed the importance of being patient with this step, being precise and ensuring straight and square axles. However, I let them at it, though I did stress that our speed squares would be a great benefit to this step.

The axles and wheels came from Pitsco. Sure, you could 3D print wheels if you have the time, but laser cutting in wood was too soft and acrylic was too brittle. A soft thermoplastic is what these wheels need to be made of, and at $0.15 a piece, it was worth avoiding the headache.

Finally, we race. I used a scrap board at first…but we really needed lanes as cars continued to collide with one another. I used some foam board to make short walls hot glued to the edge of the board. Problem solved.

A simple single round elimination was enough to have a good final race, while minimizing the winners vs losers. You can even enforce a ‘When you lose, you become a cheering squad member of the team that beat you’, ensuring an exciting final race while making all of the students feel a part of the races through the end.

Finally, have students reflect on the process. I had a short discussion, then had students go and post to Seesaw. I got lots of really awesome reflections, lots of great critical thoughts, some great doodles and awesome photos.

Looking back, this little design challenge went pretty well. The kids loved it, it was inexpensive (~$1.50 per group), and was quick to run. In the future I think it could be slowed down to highlight the engineering drawings in more detail, perhaps print wheels, and focus on nice and straight axle holes.

Part Cost Cost / Kit Source
Floral Foam (72 when halved) 35.50 (price fluctuates on amazon) 0.50 Amazon
Pitsco Axles (100) 6.50 0.13 Pitsco
Pitsco Wheels (100) 15.50 0.62 Amazon
TOTALS 57.50 1.25

Surform Tools – $2.99

Speed Squares – $2.99

 

AIDS Lifecycle 2016

This summer I had the incredible opportunity to ride my bike for San Francisco to Los Angeles, beside my father and my brother. All while we raised nearly $10,000 between the three of us for the SF AIDS Foundation and the LA LGBT Center…a fraction of the $16,139,537 raised by the nearly 1200 participants in the ride. It was a surreal life changing challenge that I am incredibly greatful that I was a part of.

In an effort to create a lasting memory of the journey, I strapped a camera to myself for the entirety of the ride. After sifting through the many hours of recordings, I’ve spliced it into an edit that I am really proud of.

I hope I have the chance to do something like this again, along side of my family doing something we love, for a cause we truly believe in!

3D Printers as Construction Toy Factories

The 3D printer is the hottest tool to bring into classrooms these days. They are the talk of the town. In lots of ways, they are amazing machines. It possibly more ways, they are tricky classroom tools. Most of them take plenty of tinkering and tuning, print times are long (a 1 hour print for all 50 students in a grade can be a week or more in the making), upkeep is time consuming. Lots of little quarks.

However, where they have excelled in my classroom is in printing construction brackets. If we aim to print small parts to be used to let students build bigger structures you can kill a few birds with one stone. Print times are reduced, and you have a build to pull students away from the computer screen.

1025160921a

I wanted to share a few examples, and how I use them in my classroom. First up, the simplest. Brackets to join straws at different angles. I took inspiration from Makerbot’s Speedy Architect project for this one. These pieces are tiny, taking less than 10 minutes on our Printrbot Simple Metals using my super-duper fast printing profile. Currently, the 6th grade is designing architectural models using these brackets. They will be adhering to uniform proportional scale for the structure (about 1″ to 10′), and will be closely monitoring a the cost of production. Straws cost $100 per inch, and 3D prints cost their real life cost, times a thousand, or about $20 per basic bracket.

straws

I’m super excited to see how this project turns out. There are lots of great math connections to the 6th grade curriculum using the scaling and the economy system. The structures are bit innocuous from the structural engineering perspective, but the amount of iterative design & 3D printing we can pull off while printing such small parts will make this project worth while. We are lucky enough that each of our groups of 4 will have their own 3D printer to operate during class time, keeping the project rolling at a fast pace.

Up next, there are the balsa wood brackets, that came from the Zazouck project on Thingiverse. These parts are a bit different than the straws in that I use them exclusively as construction tool. The parts are all printed ahead of time, sorted into different types and they are used to do rapid fire construction challenges. Most recently students were tasked with building a 12″ bridge, while controlling for the cost of parts and materials used to build the bridges.

1025160926

These pieces are great for rapid construction. They lack in the structural consistency that using glued joints might give you, but they let students build quickly. Often, balsa breaks in the brackets, but a drill bit reams them out pretty easily. These are great bits, and took about 30 mins to print a set of each piece. To get a classroom set of about 20 of each part, I had the machines running constantly for a few days. But now they are done and we have our own custom construction set…in colors that match the labs floors!

Last up, we’ve got the most complicated component yet. The craft stick brackets. These pose the most difficult design process of the three, but I think it gives the most rewarding final product. Requiring constantly being aware of stick orientation in regards to slot location on the brackets. I think the challenge of the design makes these an awesome candidate for creating a lesson on using Fusion 360 assemblies to virtual design structures before printing them. This is something I’ve got in the pipe for the 7th grade next semester.
1025160920All of these follow a basic principle. Find a material that is cheap and plentiful in you lab, and design brackets to join them at different angles. Have students design the parts, even model the whole structure in CAD before printing. Cut down print times, end up with bigger and cooler parts…its a win win all around. Have you done any construction projects like this? Let me know!

Simple, inexpensive classroom woodworking projects.

IMG_4666

I’ve really taken to woodworking this year. I think the ability to transition from high-tech to low-tech in the same space is a powerful experience for my students. Using the lovely mini-week program, I had 7 students for 3 full days of nothing but woodworking. We had a blast, and made lots of amazing things. Today, I want to take the time to show off some of these simple woodworking projects that were big hits, were cheap to do, and reasonably safe to pull off in the classroom.

The Pencil Holder – Introduction to Drill Press

The pencil holder is simple. Start with a 4″x4″ fence post, chop into square 4″x4″x4″ chunks, and let students drive holes to fit pencils. I used an 8′ piece of douglas fir from the big box shop that cost me around 10 bucks. That’ll make 24 pencil holders at a cost of about 40 cents a piece.  I let the students mark out the center points for their holes, and let them at it.

The Tea Candle Holder – Introduction to the Miter / Hand Saw

IMG_5090

The tea candle holder was a simple project. Start with a 2×4, cut it down to about a 12″ section, and drive 3 holes for tea candles using a spade bit. We rounded our corners using the belt/disc sander, and one student split the 12″ section into 3 separate pieces. She even finished with contrasting dark danish oil and boiled linseed oil. It turned out amazing!

Simple Cutting Board – Introduction to the Bandsaw

IMG_5093

The last simple project was a cutting board. I picked up a 6′ length of 7″x3/4″ poplar board from the big box store, and split them into cutting board blanks that were around 10″ long. The challenge was to sketch out a simple design to give the board some character, cut it on the bandsaw, and put down a coat of mineral oil. This was super simple, and super rewarding.

The Finishes

IMG_5096

I wanted the students to experience the challenge and joy of finishing their projects. That meant lots of hand sanding (foam sanding blocks are worth the investment!), and hand rubbed oil finishes. I had a small selection to choose from, a danish oil, boiled linseed oil, tung oil finish and a wipe on poly. This final step in each of the projects too the experience above and beyond and the students had a blast.

IMG_4610

Woodworking doesn’t need to start off with complex joinery, or fancy hardwoods. Some of the best projects take just a few cuts, a few holes and a coat of finish. The students had a blast learning about the tools, and were all extremely proud to walk out with all of their projects.

Creating algorithmic designs for fabrication in Beetleblocks

I was recently tasked with creating a quick activity that could be done within a booth at the Philadelphia Science Carnival, something that would take only a few minutes to do so kids could filter in and out of the booth. It was going to be tough to do something great with that sort of timeline, and nearly impossible to stock enough supplies to support the 400+ kids that will come through during the carnival. I decided to tap my favorite ‘free’ supply, adhesive vinyl scraps from the sign shop, creating stickers on our craft plotter.

IMG_5070

Now stickers resonate with kids in a way I don’t really understand, so I knew it would be a good draw at an event like this, but I wanted to do something less frivolous than just making worthless stickers with a craft cutting machine. So, I turned to code. We could program a cool design, and cut that out. I dove into Beetleblocks and came up with a really simple bit of code that quickly demonstrated the power of code, and the magic of math.

Screen Shot 2016-05-04 at 8.42.37 AMScreen Shot 2016-05-04 at 8.43.54 AM

The code is fairly simple. First we can have students create a square, realizing that we can use the repeat block to make our lives easier. The result is this simple little chunk of code that produces a square.

Screen Shot 2016-05-04 at 8.46.01 AMScreen Shot 2016-05-04 at 8.46.36 AM

Great! We have a square…but that is a pretty boring shape. Maybe we can make it interesting. Now we can start to think about some math. We know that a square is a 4 sided shape, with 90 degree angles in each corner. If we multiple the amount of sides and the angle of the corners, we get an important number: 360 degrees. What if we wanted an 8 sided shape? What would be the angles of the corners?

Screen Shot 2016-05-04 at 8.49.14 AMScreen Shot 2016-05-04 at 8.49.42 AM

Great! Now we’ve learned something important, and we can really get creative with the initial shape that we draw…but a single shape is boring. Lets now create lots of these shapes, and rotate the origin of the shape a bit each time to make something a bit more interesting.

Screen Shot 2016-05-04 at 8.53.19 AMScreen Shot 2016-05-04 at 8.52.46 AM

Now we’ve got something interesting! But look, we can make another interesting observation in this code. We are drawing 6 shapes within the repeat block here….each time rotating by 60 degrees. 6*60 again gives us that magic number 360! So we can create more shapes, and as long as the product of the degrees of rotation and the number of shapes equals 360 degrees.

Now that we have this code set up, we can let students play around with the numbers.

What happens if we have a 360 sided shape with 1 degree angles?
What happens if we nest yet another repeat block?
Can we use operators to automate the math for us?
Can we write our own functions like drawShape or repeatShape?

There are lots of questions that can drive further exploration. In the end, we might clean up our code using custom blocks, or add some math and variables to automate things for us.

Screen Shot 2016-05-04 at 9.01.01 AMScreen Shot 2016-05-04 at 9.01.43 AM

Screen Shot 2016-05-04 at 9.04.15 AM

A quick tip of note; to make the lines easier to see, we can change the display port settings in Beetleblocks. Uncheck the grid and the axis and check off ‘Parallel Projection’ to see directly down on our shapes. You can change the color of the background under the settings ‘gear’ icon, and change the color of the line with the ‘set hue to’ block under colors. You may need to zoom to fit as students start to build bigger shapes with more sides as well.

Screen Shot 2016-05-04 at 9.26.40 AM

 

Now, the problem with this lesson is turning these thin lines into something that can be cut out into stickers, or on a laser cutter, etc. It is easy to cut these lines, simply exporting the .SVG file out of Beetleblocks. The hard part is giving those line thickness enough to create a defined shape. The easiest way I have found is importing the SVGs into Inkscape, giving the path a fairly thick stroke, and using the Stroke to Path tool.

Ultimately, this simple activity can show a great deal of coding concepts quickly. Loops, operators, variable and functions can all be explored. The connection to geometry is obvious, using degrees in an applied way can help solidify how degrees and periodic functions can be used in action. IMG_5068

I’d love to build on this concept to do things like laser cut jewelry, hand coded letters to create signs, continue to drive algebraic math connections while creating complex machinable 2D designs. With the focus on 3D design and 3D printing, the power of 2D line is sometime forgotten.

Cutting up some wood.

I’ve ventured into the woodworking world this school year. I’ve made the effort to go out and outfit the lab with a simple set of woodworking tools, and provide chances for my students to run power tools and make some wood dust.

IMG_4349

I did this with no real project or plan in mind, other than that I knew I wanted to provide more hands-on, mess making madness into my room. In the world of digital fabrication, the lab can become pretty stuck behind screens, but these tools take us back to the roots.

IMG_4354

I started working on some personal projects, to break the tools in and hopefully become inspired to get my students behind the driver’s seat. The tools really make for a pretty productive little workflow, were reasonably inexpensive and are generally safe when used properly.

Project number one came for my 8th graders who were wrapping up their final semester with me in the lab in the middle school. I wanted to make something that they could take with them, represent their time in the middle school. Something with the creative openendedness. The results were laser engraved panels, and simple wooden frames.

IMG_4345

The images were designed in Canva, a simple little graphic / collage tool. It was simple enough to drop the student into, with a high enough ceiling that the students could make something they’d want to keep. The frames were made out of super inexpensive rough spruce furring strips from the big box store.

IMG_4340

Students were given a board long enough to make the frame, and we made the cuts quickly, and safely with the miter saw, clamped to the fence and with stop blocks set up ensuring clean safe cuts. It was easy to set the miter, show the students the cut, and let them jump on. The miter saw is a big, scary tool, but with the material fixed properly, there were no issues.

IMG_4342

Sure, the cheap furring strips were warped pretty good. Some of the miters came out a bit nasty. Gluing up wasn’t easy, because we didn’t have 20 framing clamps, and only a few band clamps. However, just taping the corners was fine, in the end the board was going to be firmly fixed to the frame with brad nails, giving it plenty of strength.

The project was a blast, if a bit messy and lots of work. It was ultimately a great experience for myself to introduce the woodworking tools to my students, and for my students to have the opportunity to get behind these tools. I’m looking forward to doing more of this sort of thing, taking a step back from the high tech and doing things the good old fashioned way with my students.

 

Introducing Design with Vexillology

As I planned to introduce some elements of design to my new 6th grade group, I turned to my personal guide through the world of design, Roman Mars and 99 Percent Invisible. The stories in their podcast are always captivating, and eye opening about all of the tiny designed elements that make up our world. I knew I’d find a good story there to share with my students…however 6th graders don’t have the attention span to listen to a 20 minute podcast…neither do I really some days. So I turned to Roman Mars’ Ted talk on the design of flags. In it, he lays out his hatred of poorly designed local city and municipal flags. He doesn’t just complain though, he offers a solution in the form of a set of flag design rules laid out by the North American Vexillological Association.

These design rules are simple, and clear:

  1. Keep it simple: The flag should be simple enough that a child can draw it from memory.
  2. Use meaningful symbolism: The flags images, colors, or patterns should relate to what it symbolizes.
  3. Use 2-3 basic colors: Limit the number of colors to three, which contrast well and come from the standard color set. 
  4. No lettering or seals: Never use writing of any kind or an organizations seal.
  5. Be distinctive or be related: Avoiding duplicating other flags, but use similarities to show connections.

These simple rules are quick, and easy to introduce to a group of students. In fact they are all described in great detail with examples in ‘Good Flag, Bad Flag‘, a 15 page primer in flag design published by NAVA. This provides a really great framework for a quick and easy design lesson: Design a flag for your school, classroom, neighborhood, etc.

So I did this quick lesson with a group of my 6th graders. I wanted to have them experience the practice of using a design rules to develop a unique flag for either the school, or the city of Philadelphia, which itself is in need of a new flag.

2000px-Flag_of_Philadelphia,_Pennsylvania.svg

Building from the Ted Talk, I encouraged (but did not require) that students draw the flag on a 1″x1.5″ square cut from a notecard. As noted by Ted Kaye in the Roman Mars Ted talk, that is the size a flag appears when seen from a typical distance. IMG_4355There were lots of ideas, lots of great flags, and a few that failed to listen to many of the design rules, but the gears were turning and the conversations were happening. What is the best symbolism to represent our school? If we threw away our blue and grey colors and had to pick our own colors, what would you choose?
IMG_4359

My effort with teaching design is to have my students look at the world in a different way. Roman Mars and I have the same mission in this sense:

“My mission is to get people to engage with the design that they care about so they begin to pay attention to all forms of design. When you decode the world with design intent in mind, the world becomes kind of magical. Instead of seeing the broken things, you see all the little bits of genius that anonymous designers have sweated over to make our lives better. And that’s essentially the definition of design: making life better and providing joy”
– Roman Mars

IMG_4357

The level with which the students connected to this lesson was pretty shocking. I was expected a bit of ‘this is stupid and boring’, but after breaking down what makes a good flag, and what makes a bad flag, we had a blast digging through different flag designs and showing off the best and worst we could find.

This project can easily to be extended in the makerspace classroom, using tools like the vinyl cutter to cut stickers that my students love to put on their computers, or to cut fabric that can be stitched together into a full scale flag.

It was a quick and easy lesson, and surely all of my students will now never look at a flag the same ever again. In fact, they might be critical of all of the terribly designed flags in the world, and perhaps do something about it.

I’ve prepared a slideshow of good flags and bad flags to show to students, or to use to quiz them after reviewing the design rules. See that here. Or, if you like to Kahoot in your classroom, I’ve put together this Kahoot too.